\qquad Hour: \qquad
1.) $(a+b)^{2}(a+b)^{-3}$
2.) $\frac{\left(2 a^{7}\left(3 a^{2}\right)\right.}{6 a^{3}}$

Directions: Complete the equation by filling the box with the correct number.
3.) $\left(3 x^{3} y^{\square}\right)^{3}=27 x^{9}$
4.) $\left(m^{2} n^{3}\right)^{\square}=\frac{1}{m^{6} n^{9}}$

Name: \qquad Hour: \qquad Standard: A-SSE.3c. Use the properties of exponents to transform expressions for exponential functions.
1.) $(a+b)^{2}(a+b)^{-3}$
2.) $\frac{\left(2 a^{7}\left(3 a^{2}\right)\right.}{6 a^{3}}$

Directions: Complete the equation by filling the box with the correct number.
3.) $\left(3 x^{3} y^{\square}\right)^{3}=27 x^{9}$
4.) $\left(m^{2} n^{3}\right)^{\square}=\frac{1}{m^{6} n^{9}}$

Name: \qquad Hour: \qquad Standard: F-IF.7e. Graph exponential functions and show intercepts, maxima, and minima.

Directions: Graph the function $y=2 \cdot\left(\frac{1}{2}\right)^{x}$ using the domain: $\{-2,-1,0,1,2\}$.

X	Y

Name: \qquad Hour: \qquad Standard: F-IF.7e. Graph exponential functions and show intercepts, maxima, and minima.

Directions: Graph the function $y=2 \cdot\left(\frac{1}{2}\right)^{x}$ using the domain: $\{-2,-1,0,1,2\}$.

\qquad Hour: \qquad Standard: F-LE.1a. Prove that exponential functions grow by equal factors over equal intervals.

Directions: Determine if each situation is linear or exponential. Provide the equation and defend your answer.

X	Y
0	1
1	4
2	16
3	64

X	Y
0	0
1	2
2	4
3	6

Name: \qquad Hour: \qquad Standard: F-LE.1a. Prove that exponential functions grow by equal factors over equal intervals.

Directions: Determine if each situation is linear or exponential. Provide the equation and defend your answer.

X	Y
0	1
1	4
2	16
3	64

X	Y
0	0
1	2
2	4
3	6

\qquad Hour: \qquad
Standard: F-LE.5. Interpret the parameters in an exponential function in terms of a context. Standard: S-ID.6a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

/4

Directions: Complete the table and make a graph to represent the growth over time.

Then, answer the follow up questions.

A butterfly species doubles its population annually. If the population starts with 10 butterflies, create a table and graph that shows the growth over time.

X	Y
0	10
1	
2	
3	
4	
5	

1.) What is the growth factor for this relationship?
2.) What does it represent?
3.) What is the y-intercept for this relationship?
4.) What does it represent?
5.) Should your graph extend into the $2^{\text {nd }}$ quadrant? Why or why not?

