Name: \qquad Hour: \qquad Standard: A-SSE. $3 b$ Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. (Using Vertex Form)

Directions: Convert the following equations into vertex form, then identify the vertex by completing the square.
1.) $f(x)=x^{2}-9 x+3$
2.) $f(x)=x^{2}-2 x+1$

Name: \qquad Hour: \qquad Standard: A-SSE. $3 b$ Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. (Using Vertex Form)

Directions: Convert the following equations into vertex form, then identify the vertex by completing the square.
1.) $f(x)=x^{2}-9 x+3$
2.) $f(x)=x^{2}-2 x+1$

Name:

\qquad Hour: \qquad
Standard: F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationships.

Graph the function and be sure to label your graph.

The height, h (in feet), of a gold ball depends on the time, t (in seconds), it has been in the air. Sam hit a shot off the tee that has a height modeled by the velocity function $h(t)=-12 t^{2}+48 t$.

Name: \qquad Hour: \qquad
Standard: F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationships.

Graph the function and be sure to label your graph.

The height, h (in feet), of a gold ball depends on the time, t (in seconds), it has been in the air. Sam hit a shot off the tee that has a height modeled by the velocity function $h(t)=-12 t^{2}+48 t$.

Name: \qquad Hour: \qquad
Standard: F-IF.7a Graph quadratic functions and show intercepts, maxima, and minima.

Directions: Graph the function and answer the following questions.

$$
f(x)=-x^{2}+8 x-5
$$

1.) Vertex:
2.) Is the vertex a maximum or minimum?
3.) Line of symmetry?
4.) x-intercept(s):
5.) y-intercept(s):

Name: \qquad Hour: \qquad
Standard: F-IF.7a Graph quadratic functions and show intercepts, maxima, and minima.

Directions: Graph the function and answer the following questions.

$$
f(x)=-x^{2}+8 x-5
$$

1.) Vertex:
2.) Is the vertex a maximum or minimum?
3.) Line of symmetry?
4.) x-intercept(s):
5.) y-intercept(s):
\qquad Hour: \qquad Standard: A-REI.4b. Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation.

Directions: Solve using the indicated method. Round to the nearest hundredth if necessary. If there is no solution, write "no solution".
1.) Square Roots: $4 w^{2}-25=0$
2.) Factoring: $x^{2}-12 x=-36$
3.) Completing the Square: $x^{2}-14 x+16=0$
4.) Quadratic Formula: $7 x^{2}-2 x-8=0$

Directions: Use any method. Write your answer in complex number form.
5.) $2 x^{2}+32=0$
6.) $25 x^{2}-6 x+1=0$

Name: \qquad Hour: \qquad Standard: A-REI.4b. Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation.

Directions: Solve using the indicated method. Round to the nearest hundredth if necessary. If there is no solution, write "no solution".
1.) Square Roots: $4 w^{2}-25=0$
2.) Factoring: $x^{2}-12 x=-36$
3.) Completing the Square: $x^{2}-14 x+16=0$
4.) Quadratic Formula: $7 x^{2}-2 x-8=0$

Directions: Use any method. Write your answer in complex number form.
5.) $2 x^{2}+32=0$
6.) $25 x^{2}-6 x+1=0$
\qquad Hour: \qquad
Standard: A-REI.4a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.

Directions: Using the equation given, identify the correct solution set and explain why that one is correct.
$49=(x+2)^{2}$
a.) $\{5\}$
b.) $\{-9\}$
c.) $\{-5,9\}$
d.) $\{5,-9\}$

Name: \qquad Hour: \qquad Standard: A-REI.4a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.

Directions: Using the equation given, identify the correct solution set and explain why that one is correct.
$49=(x+2)^{2}$
a.) $\{5\}$
b.) $\{-9\}$
c.) $\{-5,9\}$
d.) $\{5,-9\}$

Name: \qquad Hour: \qquad Standard: F-IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Directions: Find the zeroes of the quadratic function by the method indicated.
1.) Factoring: $f(x)=x^{2}-9$
2.) Completing the square: $x^{2}+5 x-50=f(x)$

Name: \qquad Hour: \qquad Standard: F-IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
1.) Factoring: $f(x)=x^{2}-9$
2.) Completing the square: $x^{2}+5 x-50=f(x)$

Name: \qquad Hour: \qquad Standard: A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

A physics teacher put a ball at the top of a ramp and let it roll down toward the floor. The class determined that the height of the ball could be represented by an equation where the height, h, is measured in feet from the ground and time, t, in seconds. When they solved, they got t to equal 1 and -1 .

Look at the two solutions for t. Which one is reasonable? Does the final answer make sense based on this context? Explain.

Name: \qquad Hour: \qquad Standard: A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

A physics teacher put a ball at the top of a ramp and let it roll down toward the floor. The class determined that the height of the ball could be represented by an equation where the height, h, is measured in feet from the ground and time, t, in seconds. When they solved, they got t to equal 1 and -1 .

Look at the two solutions for t. Which one is reasonable? Does the final answer make sense based on this context? Explain.

