

$$
43=4 \cdot 4 \cdot 4=4
$$

$$
95=9 \cdot 9 \cdot 9 \cdot 9 \cdot 9=
$$

$33^{3}=$

The base is only what is ఏరొPe symbol to be included in the base，it must be grouped with parentheses．

The neadive symbol is NOT part ore the base．

$$
\left.-q^{3}=-\left[q^{2} \cdot q \cdot q\right]=-6\right\}
$$

The reactive sumbol IS part art the base．

$$
(-母)^{3}=(-4) \cdot(-母) \cdot(-母)=(4
$$

We must

in order to add and subtract with exponents.

When we multiply the bases of terms with
 Multiplying bases

 exponents...

DIVISION WITH EXPONENTS

When we divide the salme bases with exponents...

 $2^{-4}=\frac{1}{2^{4}}=\frac{1}{16}$

$a d^{-4}=\overline{d^{4}}$

Scientific Notation: Basics

Operations with Scientific notation

Properties of Exponents

There are many properties of exponents that we will study. Below, we will investigate many properties and practice using those properties.

Exponents of Zero and One

$$
(-2)^{0}=\quad 4^{1}=\quad\left(\frac{1}{2}\right)^{0}=\quad\left(\frac{1}{3}\right)^{1}
$$

Any term raised to the zero power is \qquad
Any term raised to the power of one is \qquad

Adding/Subtracting with exponents

$6 y^{2}+4 y^{2}=$
$10 w^{2}-5 w^{3}=$
$z^{3}+z^{2}=$

What rule can you generalize when adding and subtracting terms with exponents? \qquad

Multiplying with exponents

$$
\begin{aligned}
& x^{2} \cdot x^{4}=x \cdot x \cdot x \cdot x \cdot x \cdot x=x^{2+4}=x^{6} \\
& 3 x^{2} \cdot 4 x^{3}=3 \cdot x \cdot x \cdot 4 \cdot x \cdot x \cdot x=12 x^{2+3}=12 x^{5}
\end{aligned}
$$

$6 y^{2} \cdot 4 y^{3}=$
$2 c^{4} \cdot 3 c^{6}=$
$3 k^{-2} \cdot 8 k^{4}=$
$a^{2} c^{4} \cdot 3 a^{3} c^{9}=$

Raising a Power to a Power

$$
\begin{aligned}
& \left(x^{2}\right)^{3}=x \cdot x \cdot x \cdot x \cdot x \cdot x=x^{2 \cdot 3}=x^{6} \\
& \left(2 m^{2}\right)^{3}=2 m \cdot m \cdot 2 m \cdot m \cdot 2 m \cdot m=16 m^{2 \cdot 3}=16 m^{6}
\end{aligned}
$$

$\left(y^{4}\right)^{-2}=$
$\left(b^{2}\right)^{3} \cdot\left(b^{4}\right)^{5}=$
$\left(m^{2} k^{3}\right)^{4}=$

Division with exponents

$$
\begin{aligned}
& \frac{a^{4}}{a^{2}}=\frac{a \cdot a \cdot a \cdot a}{a \cdot a}=\frac{a \cdot a \cdot a \cdot a}{a \cdot a}=a \cdot a=a^{2} \\
& \frac{6 m^{4}}{2 m^{2}}=\frac{6}{2} m^{4-2}=3 m^{4-2}=3 m^{2}
\end{aligned}
$$

$$
\frac{3 x^{2} y^{7}}{x^{5} y^{3}}=
$$

$$
\frac{w^{4}}{w^{9} m^{5}}=
$$

Negative Exponents with Numbers

$3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$	$3^{-4}=$
$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$	$3^{-5}=$
$3^{-3}=$	$x^{-6}=$

Rules in math request for there to be no negative exponents in a final answer, therefore there is a property that allows us to remove the negative sign in exponents. Fill in the chart with the appropriate solution.

$a^{-3}=\frac{1}{a^{3}}$	$\frac{a^{2} x^{4}}{n^{-7}}=$
$\frac{3 a^{-4}}{2}=\frac{3 \cdot a^{-4}}{2}=\frac{3}{2 a^{4}}$	$a^{2} g^{-7}=$
$\frac{7 x}{5 a^{-9}}=\frac{7 \cdot x}{5 \cdot a^{-9}}=\frac{7 x a^{9}}{5}$	$\frac{e^{-8}}{p^{-2}}=$

$a b^{-2}=$

$$
\frac{x^{-2}}{x^{2} y^{2}}=
$$

Putting It All Together!

Now, we are going to take all of these rules and simplify expressions using many of them at one time.

1. $\frac{15 a^{5} b^{2} c^{4}}{25 a^{3} b^{-3}\left(c^{2}\right)^{3}}=$
2. $\frac{3 x^{6}}{\left(x^{1}\right)^{3}}=$
3. $\left(-3 x^{-1} y^{2}\right)^{4}=$
4. $\left(-5 x^{-2} y\right)\left(-2 x^{-3} y^{2}\right)$

Properties of Exponents

1) $2 m^{2} \cdot 2 m^{3}$
2) $m^{4} \cdot 2 m^{-3}$
3) $4 r^{-3} \cdot 2 r^{2}$
4) $4 n^{4} \cdot 2 n^{-3}$
5) $2 k^{4} \cdot 4 k$
6) $2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3}$
7) $2 y^{2} \cdot 3 x$
8) $4 v^{3} \cdot v u^{2}$
9) $4 a^{3} b^{2} \cdot 3 a^{-4} b^{-3}$
10) $x^{2} y^{-4} \cdot x^{3} y^{2}$
11) $\left(x^{2}\right)^{0}$
12) $\left(4 r^{0}\right)^{4}$
13) $\left(4 a^{3}\right)^{2}$
14) $\left(3 k^{4}\right)^{4}$
15) $(4 x y)^{-1}$
16) $\left(2 b^{4}\right)^{-1}$
17) $\left(x^{2} y^{-1}\right)^{2}$
18) $\left(2 x^{4} y^{-3}\right)^{-1}$
19) $(3 m)^{-2}$
20) $\frac{r^{2}}{2 r^{3}}$
21) $\frac{x^{-1}}{4 x^{4}}$
22) $\frac{3 n^{4}}{3 n^{3}}$
23) $\frac{m^{4}}{2 m^{4}}$
24) $\frac{3 m^{-4}}{m^{3}}$
25) $\frac{2 x^{4} y^{-4} z^{-3}}{3 x^{2} y^{-3} z^{4}}$
26) $\frac{4 x^{0} y^{-2} z^{3}}{4 x}$
27) $\frac{2 h^{3} j^{-3} k^{4}}{3 j k}$
28) $\frac{4 m^{4} n^{3} p^{3}}{3 m^{2} n^{2} p^{4}}$
29) $\frac{3 x^{3} y^{-1} z^{-1}}{x^{-4} y^{0} z^{0}}$

EXPONENT PROPERTIES MAZE

 directions: solve the problems in the bold boXes. find the solution in the dotted boXes and continue Through the maze.

Writing Equivalent Expressions

For each expression given, please write 4 additional equivalent expressions using the method indicated.

Expression	Write using Multiplication with Exponents	Write using Division with Exponents	Write using Raising a Power to a Power	Write using any method you chose
10^{5}				
x^{-7}				
a^{8}				
y^{9}				
$a^{2} b^{5}$				
y^{0}				
a^{-5}				
b^{7}				
a^{5}				
$a^{-5} b^{8}$				

\qquad

What do you get when you cross a piranha and 0 hyena?

Match each number in scientific notation with it's standard form to find out! Place the letter associated with the correct answer, in the numbered box below.

1) 3.26×10^{4}
A) 8,350
2) $1.4 \times 10^{\circ}$
N) 0.00326

3) 1.2×10
A) 0.008
4) 3.2×10^{-2}
A) 0.0000014
5) 8.35×10^{3}
P) $1,400,000$
6) 3.26×10^{-4}
H) 3,000
7) 3×10^{5}
A) 32,600
8) 1.2×10^{5}
A) 1,200
9) 8.35×10^{-3}
H) 0.00835
10) 1.4×10^{-8}
H) 0.102
11) 1.02×10^{-1}
I) 12
12) 8×10^{-4}
R) 0.032

SCIENTIFIC NOTATION

Directions: To write the number in scientific notation, first write how many places each decimal must be moved until there is only ONE NUMBER (not zero) in front of the decimal. Then write whether the decimal was moved LEFT or RIGHT. Finally, write the number in scientific notation.

NUMBER	PLACES MOVED	DIRECTION	SCIENTIFIC NOIATION
325,000	5	LEFT	3.25×10^{5}
89,300			
$206,000,000$			
0.456			
0.0712			
0.000000051			
$75,000,000,000$			

Directions: Write each number in Standard Form by moving the decimal according to the value of the exponent. Remember, think about a number line. The negative numbers are on the LEFT and the positive numbers are on the RIGHT.
$5.3 \times 10^{3}=$ \qquad $=\quad 5,300$
$3.7 \times 10^{-6}=$ \qquad $=$ \qquad
$2.15 \times 10^{2}=$ \qquad $=$ \qquad
$9.03 \times 10^{4}=$ \qquad $=$ \qquad
$7.67 \times 10^{-1}=$ \qquad $=$ \qquad
$3.99 \times 10^{-5}=$ \qquad $=$ \qquad

Directions: Record your answers here as you work through the stations.

Operations with Scientific Notation

1.) $\left(8.56 \times 10^{5}\right)+\left(3.2 \times 10^{4}\right)$
2.) $\left(4.67 \times 10^{-4}\right)+\left(5.9 \times 10^{-4}\right)$
3.) $\left(4 \times 10^{4}\right)-\left(2.5 \times 10^{2}\right)$
4.) $\left(5.12 \times 10^{-6}\right)-\left(4.23 \times 10^{-6}\right)$
5.) $\left(6 \times 10^{3}\right)\left(3 \times 10^{2}\right)$
6.) $\left(7.398 \times 10^{-1}\right)\left(1 \times 10^{-1}\right)$
7.) $\frac{\left(2.8 \times 10^{7}\right)}{\left(3.5 \times 10^{3}\right)}$
8.) $\frac{\left(4.77 \times 10^{8}\right)}{\left(3.5 \times 10^{-3}\right)}$

8. 1 II. 4 (1)

Situation: It is your job to figure out how many Americans eat at Gooeyburger every day. Use the following information to help you.

- There are about 8×10^{3} Gooeyburger restaurants in America.
- Each restaurant serves an average of 2.5×10^{3} people every day.

Explain your reasoning and show your work.

Situation: The world is consuming approximately 87 million barrels of oil per day. At this rate of consumption, how long will the known oil reserves of 1.653×10^{12} barrels last?

Explain your reasoning and show your work.

Additional Practice: $p=4 \times 10^{14}$ and $q=8 \times 10^{9}$.
a.) What is the value of $p q$?
b.) What is the value of $\frac{p}{q}$?

