

We must

T

ø

<u>n</u>n

Â

in order to add and subtract with exponents.

3

SUBTRACTING EXAMPLES:

Scientific Notation: Basics
Positive Exponents =
$7,500,000,000 = \cdot 10-$
$0.00000479 = - 10^{-1}$
Negative Exponents =

Properties of Exponents

There are many properties of exponents that we will study. Below, we will investigate many properties and practice using those properties.

Exponents of Zero and One

What rule can you generalize when adding and subtracting terms with exponents? ______

Multiplying with exponents

$$x^{2} \cdot x^{4} = \boxed{x \cdot x} \cdot \boxed{x \cdot x \cdot x \cdot x} = x^{2+4} = x^{6}$$
$$3x^{2} \cdot 4x^{3} = \boxed{3 \cdot x \cdot x} \cdot \boxed{4 \cdot x \cdot x \cdot x} = 12x^{2+3} = 12x^{5}$$

 $6y^2 \cdot 4y^3 = 2c^4 \cdot 3c^6 = 3k^{-2} \cdot 8k^4 =$

 $a^2c^4 \cdot 3a^3c^9 =$

Raising a Power to a Power

$$(x^{2})^{3} = \boxed{x \cdot x} \cdot \boxed{x \cdot x} \cdot \boxed{x \cdot x} = x^{2 \cdot 3} = x^{6}$$
$$(2m^{2})^{3} = \boxed{2m \cdot m} \cdot \boxed{2m \cdot m} \cdot \boxed{2m \cdot m} = 16m^{2 \cdot 3} = 16m^{6}$$

$$(y^4)^{-2} = (b^2)^3 \cdot (b^4)^5 = (m^2 k^3)^4 =$$

Division with exponents

$$\frac{a^4}{a^2} = \frac{a \cdot a \cdot a \cdot a}{a \cdot a} = \frac{a \cdot a \cdot a \cdot a}{a \cdot a} = a \cdot a = a^2$$

$$\frac{6m^4}{2m^2} = \frac{6}{2}m^{4-2} = 3m^{4-2} = 3m^2$$

$$\frac{3x^2y^7}{x^5y^3} = \frac{w^4}{w^9m^5} =$$

Negative Exponents with Numbers

$$\begin{vmatrix} 3^{-1} = \frac{1}{3^1} = \frac{1}{3} \\ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \end{vmatrix} \begin{vmatrix} 3^{-4} = \\ 3^{-5} = \\ 3^{-3} = \end{vmatrix} x^{-6} = \begin{vmatrix} x^{-6} = \end{vmatrix}$$

Rules in math request for there to be no negative exponents in a final answer, therefore there is a property that allows us to remove the negative sign in exponents. Fill in the chart with the appropriate solution.

$$\begin{aligned} a^{-3} &= \frac{1}{a^3} & \frac{a^2 x^4}{n^{-7}} = \\ \frac{3a^{-4}}{2} &= \frac{3 \cdot a^{-4}}{2} = \frac{3}{2a^4} & a^2 g^{-7} = \\ \frac{7x}{5a^{-9}} &= \frac{7 \cdot x}{5 \cdot a^{-9}} = \frac{7xa^9}{5} & \frac{e^{-8}}{p^{-2}} = \end{aligned}$$

$$ab^{-2} = \frac{x^{-2}}{x^2y^2} =$$

Putting It All Together!

Now, we are going to take all of these rules and simplify expressions using many of them at one time.

1.
$$\frac{15a^5b^2c^4}{25a^3b^{-3}(c^2)^3} = 2. \frac{3x^6}{(x^1)^3} =$$

3.
$$(-3x^{-1}y^2)^4 =$$

4. $(-5x^{-2}y)(-2x^{-3}y^2)$

Properties of Exponents

1) $2m^2 \cdot 2m^3$	2) $m^4 \cdot 2m^{-3}$
3) $4r^{-3} \cdot 2r^2$	4) $4n^4 \cdot 2n^{-3}$
5) $2k^4 \cdot 4k$	6) $2x^3y^{-3} \cdot 2x^{-1}y^3$
7) $2y^2 \cdot 3x$	8) $4v^3 \cdot vu^2$
9) $4a^3b^2 \cdot 3a^{-4}b^{-3}$	10) $x^2 y^{-4} \cdot x^3 y^2$
11) $(x^2)^0$	12) $(2x^2)^{-4}$
13) $(4r^0)^4$	14) $(4a^3)^2$

15) $(3k^4)^4$ 16) $(4xy)^{-1}$

17)
$$(2b^4)^{-1}$$
 18) $(x^2y^{-1})^2$

19)
$$(2x^4y^{-3})^{-1}$$
 20) $(3m)^{-2}$

21)
$$\frac{r^2}{2r^3}$$
 22) $\frac{x^{-1}}{4x^4}$

23)
$$\frac{3n^4}{3n^3}$$
 24) $\frac{m^4}{2m^4}$

25)
$$\frac{3m^{-4}}{m^3}$$
 26) $\frac{2x^4y^{-4}z^{-3}}{3x^2y^{-3}z^4}$

27)
$$\frac{4x^0 y^{-2} z^3}{4x}$$
 28) $\frac{2h^3 j^{-3} k^4}{3jk}$

29)
$$\frac{4m^4n^3p^3}{3m^2n^2p^4}$$

$$30) \ \frac{3x^3y^{-1}z^{-1}}{x^{-4}y^0z^0}$$

EXPONENT PROPERTIES MAZE

DIRECTIONS: SOLVE THE PROBLEMS IN THE BOLD BOXES. FIND THE SOLUTION IN THE DOTTED BOXES AND CONTINUE THROUGH THE MAZE.

Writing Equivalent Expressions

For each expression given, please write 4 additional equivalent expressions using the method indicated.

Expression	Write using Multiplication with Exponents	Write using Division with Exponents	Write using Raising a Power to a Power	Write using any method you chose
10 ⁵	•			
x ⁻⁷				
a ⁸				
y ⁹				
a^2b^5				
y ⁰				
$\frac{1}{a^5}$				
$a^{-5}b^4c^8$				
$\frac{a^{-5}}{b^7}$				

										are				
١	√h(0+ 0	d0 Pi	Y0 ra	u s Nha)6+) (1	Wł Nd	nen a k	۱) ۱	rou enc	1 CI 1?	^(SS	a
	M Plac	latch ea ce the le	ch nur tter a:	nber ir sociat	n scient ed with	ific not 1 the co	ation w rrect a	vith it's nswer,	sta in t	ndard f he nurr	orm to ubered	finc box	l out! below	L
			1) 3	3.26 x	c 10*		A)	8,35	C		10	5)	M	$M \Lambda$
			2) 1	.4 x	10*		N)	0.00	320	5		ň	n	m
			3) 1	.2 x	10		A)	0.00	В					
			4)	3.2 x	10-²		A)	0.00	000	014				
			5)	8.35	x 10ª		P)	1,40	0,C	00				
			6)	3.26	x 10-	4	H)	3,000)					
			7)	3 x 1(0*		A)	32,6	00					
			8) 1	.2 x	10°		A)	1,20	D					
			9)	8.35	x 10-	8	H)	0.00	335	5				
			10) 1.4 x 10-°		H) 0.102									
M	M	2	11)	1.02	2 x 10	-1	I)	12						
m		12)	12) 8 x 10-4		R)	0.03	2							
									-			-		
└ ──	1	2	3	4	5	6	7	8		9	10	Ļ	11	12

SCIENTIFIC NOTATION

<u>Directions</u>: To write the number in scientific notation, first write how many places each decimal must be moved until there is only ONE NUMBER (not zero) in front of the decimal. Then write whether the decimal was moved LEFT or RIGHT. Finally, write the number in scientific notation.

NUMBER	PLACES MOVED	DIRECTION	SCIENTIFIC NOTATION
325,000	5	LEFT	3.25 × 10⁵
89,300			
206,000,000			
0.456			
0.0712			
0.00000051			
75,000,000,000			

<u>Directions:</u> Write each number in Standard Form by moving the decimal according to the value of the exponent. Remember, think about a number line. The negative numbers are on the LEFT and the positive numbers are on the RIGHT.

5.3 x 10 ⁸ =	5.3	=	5,300	
3.7 x 10 ⁻⁶ =		=		
2.15 × 10 ² =		=		
9.03 x 10' =		=		
7.67 x 10 ⁻¹ =		=		
3.99 x 10 ⁻⁵ =		=		

Directions: Record your answers here as you work through the stations.

Operations with Scientific Notation

1.) $(8.56 \times 10^5) + (3.2 \times 10^4)$

2.) $(4.67 \times 10^{-4}) + (5.9 \times 10^{-4})$

3.) $(4 \times 10^4) - (2.5 \times 10^2)$

4.) $(5.12 \times 10^{-6}) - (4.23 \times 10^{-6})$

5.) $(6 \times 10^3)(3 \times 10^2)$

6.) $(7.398 \times 10^{-1})(1 \times 10^{-1})$

7.) $\frac{(2.8 \times 10^7)}{(3.5 \times 10^3)}$

8.)
$$\frac{(4.77 \times 10^8)}{(3.5 \times 10^{-3})}$$

8.EE.4 Operations with scientific Notation

Situation: It is your job to figure out how many Americans eat at Gooeyburger every day. Use the following information to help you.

- There are about 8×10^3 Gooeyburger restaurants in America.
- Each restaurant serves an average of 2.5 x 10³ people every day.

Explain your reasoning and show your work.

Situation: The world is consuming approximately 87 million barrels of oil per day. At this rate of consumption, how long will the known oil reserves of 1.653×10^{12} barrels last?

Explain your reasoning and show your work.

Additional Practice: $p = 4 x 10^{14}$ and $q = 8 x 10^{9}$.

a.) What is the value of pq?

b.) What is the value of
$$\frac{p}{q}$$
?